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Abstract. A theory is developed for theT = 0 Mott–Hubbard insulating phases of thed∞
Hubbard model at12-filling, including both the antiferromagnetic (AF) and paramagnetic (P)
insulators. Local moments are introduced explicitly from the outset, enabling ready identification
of the dominant low-energy scales for insulating spin-flip excitations. Dynamical coupling
of single-particle processes to the spin-flip excitations leads to a renormalized self-consistent
description of the single-particle propagators that is shown to be asymptotically exact in strong
coupling, for both the AF and P phases. For the AF case, the resultant theory is applicable over
the entireU -range, and is discussed in some detail. For the P phase, we consider in particular
the destruction of the Mott insulator, the resultant critical behaviour of which is found to stem
inherently from proper inclusion of the spin-flip excitations.

1. Introduction

Since its inception more than thirty years ago [1], the Hubbard model has become the
canonical model of interacting fermions on a lattice. Although possibly the simplest model
for describing competition between electron itinerancy and localization, with attendant
implications for a host of physical phenomena from magnetism to metal–insulator transitions,
its simplicity is superficial and an exact solution exists only ford = 1 dimension [2].

Recently, Metzner and Vollhardt [3] have pointed to the importance of the opposite
extreme,d = ∞. In suppressing spatial fluctuations, the many-body problem here simplifies
considerably, reducing to a dynamical single-site mean-field problem. Motivated in part by
the expectation that an understanding of thed = ∞ limit will serve as a starting point for
systematic investigation of finite dimensions, and by the knowledge that some important
vestiges of finite-d behaviour remain inherent in thed = ∞ limit, intense study of the
1
2-filled d = ∞ Hubbard model on bipartite lattices has since ensued; for recent detailed
reviews, see references [4–6].

The true ground state of the model is an antiferromagnet (AF) for all interaction strengths
U > 0. One aim of the present work [7] is to develop a theory for thed = ∞ AF which,
in contrast to previous theories for the AF phase [8–10], is reliable over the entireU -range,
and in particular becomes exact in theU →∞ strong-coupling limit both at12-filling where
the Hubbard model maps onto the AF Heisenberg model, and in the one-hole sector where
it reduces to thet–J model [11]

The majority of previous work [4–6] on thed = ∞ Hubbard model has focused on
the paramagnetic (P) phase that results, even forT = 0, simply by neglecting the magnetic
ordering (or suppressing it via frustration [5]). One highlight of this work has been the
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emergence of a detailed description of the Mott metal–insulator transition, although here
too the picture is not complete: for example, a firm understanding of the mechanism by
which theT = 0 Mott insulating solution is destroyed, and even whether it is continuous or
first order, remains elusive [5, 12]. A second aim of this paper is to focus on the insulating
state of the P phase, and to develop a theory for it on a footing essentially identical to that
for the AF, which likewise becomes exact in strong coupling and which permits an analysis
of the destruction of the Mott insulator.

In seeking to develop a ‘unified’ description of the AF and P insulating phases, we adopt
a rather different approach to that taken in previous work [4–6] by introducing explicitly, and
from the outset, the notion of site local moments. To this end we consider first a conventional
T = 0 mean-field approach to the problem in the form of unrestricted Hartree–Fock (UHF),
together with a random-phase approximation (RPA) for transverse spin excitations of the
mean-field state. Despite the limitations of such an approachper se, its importance resides
in enabling identification of key low-energy scales for insulating spin-flip excitations. Since
spatial fluctuations are suppressed ford = ∞, the low-energy spin-flip excitations are found
to be Ising-like and (for each phase) characterized by a single scale,ωs . This has a simple
physical interpretation. For the AF,ωs = ωp(U) is essentially just the energy cost of
flipping a spin in the Ńeel ordered background; the ubiquity of antiferromagnetism for all
U > 0 leads naturally toωp > 0 for allU , with ωp ∼ 1/U asU →∞ as one expects in the
Heisenberg limit. For the P phase by contrast, where magnetic ordering is absent, the fact
that a given spin is equally likely to be surrounded by↑- or ↓-spins and thus (ford = ∞)
has as many↑- as↓-spin neighbours, ensures that the corresponding spin-flip energy cost
ωs = 0 for all U in the insulating state.

Identification of the low-energy spin-flip scales, while crucial to the present work, is
preliminary: to transcend the limitations of the conventional ‘static’ mean-field approach,
single-particle processes must subsequently be coupled dynamically to the transverse spin-
flip excitations. It is this which, in leading as we shall describe to a self-consistent
description of the single-particle Green functions, enables the aims outlined in the preceding
paragraphs to be achieved.

The Hubbard Hamiltonian, in standard notation, is

H = −t
∑
(ij)σ

c
†
iσ cjσ + U

∑
i

ni↑ni↓ t = t∗/
√

2Z (1.1)

with the (ij) sum over nearest-neighbour sites on a bipartite lattice of coordination number
Z: a Bethe lattice (on which in practice we shall largely focus), or ad-dimensional
hypercube. To ensure a non-trivial limit asd →∞ [3], the hopping is scaled ast = t∗/

√
2Z.

The paper is organized as follows. UHF+ RPA, and the spin-flip scales referred to above,
are discussed in section 2. Emphasis is also given here to simple physical arguments which,
in highlighting both the deficiencies and virtues of UHF+ RPA, indicate what is required
to go beyond it; particular attention being given in this regard to UHF for the P phase, in
view of its close relation to the early work of Hubbard [13] and the Falicov–Kimball model
[14].

Dynamical coupling of single-particle processes to the transverse spin excitations is
considered in section 3, leading (section 3.1) to a renormalized self-consistent approximation
for the (T = 0) single-particle Green functions upon which we subsequently concentrate.
In section 3.2 the strong-coupling behaviour is examined analytically, and shown to be
asymptotically exact for both the P and AF phases. Results are given in section 3.3, focusing
in particular on single-particle spectra for the AF phase from strong to weak coupling, and
on a discussion of the localization characteristics of the single-particle excitations—the latter
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being quite subtle, and pointing to the delicacy of the limitU →∞ for the AF phase. For
the P insulator, single-particle spectra are discussed briefly in section 3.3, before considering
the destruction of the Mott insulating solution in section 4. The single-particle gap is found
to close continuously, with an exponentν = 1, at a criticalUc = 3.41t∗. The origins of this
behaviour are found to stem from inclusion of theωs = 0 spin-flip scale in the interaction
self-energies, pointing to the importance of such throughout the entire insulating regime,
and not solely in obtaining the exact strong-coupling limit. The results of section 4 are in
good agreement with recent numerical work [12], as discussed in section 5.

2. Conventional mean-field approach

We focus on the zero-temperature single-particle Green functions, defined by

Gii;σ = −i〈T {ciσ (t)c†iσ }〉 ≡ G+ii;σ (t)+G−ii;σ (t) (2.1)

(for the site-diagonal element); and separated for later purposes into retarded (+, t > 0)
and advanced (−, t 6 0) components. The essential feature ofd∞ is that the corresponding
interaction self-energy is site diagonal [3, 15],6̃ij ;σ (ω̃) = δij 6̃iσ (ω̃); here, and throughout,
ω̃ denotes frequency relative to the Fermi level, namelyω̃ = ω − U/2. Gii;σ (ω̃) may be
written as

Gii;σ (ω̃) = [ω̃ − 6̃iσ (ω̃)− Siσ (ω̃)]−1 (2.2a)

whereSiσ is the ‘medium’ self-energy—which alone survives in the non-interacting limit—
expressing hopping ofσ -spin electrons to neighbouring sites. Simple application of
Feenberg’s renormalized perturbation theory [16, 17] shows that, ford = ∞ but regardless
of lattice type,Siσ is a functional solely of the{Gjj ;σ }. The functional dependence is
particularly simple for the Bethe lattice (BL) on which we concentrate, namely

Siσ (ω̃) =
∑
j

t2ijGjj ;σ (ω̃) (2.2b)

with tij = t∗/
√

2Z the nearest-neighbour hopping element. Note that this is quite general;
no assumption has been made about magnetic ordering or otherwise.

We consider now a conventional mean-field approach to the single-particle Green
functions.

2.1. UHF

For both the AF and P phases, a Hartree–Fock approximation—by which we emphasize
is here meant spin-unrestrictedHartree–Fock (UHF)—is the simplest non-trivial mean-field
approximation, in which the notion of site local moments (µi), regarded as the first effect of
electron interactions, enters from the outset. In the AF case, the local moments are naturally
ordered in an A/B two-sublattice Ńeel state, withµi = ±|µ| for site i in the A/B sublattice
respectively [18]. For the P phase by contrast, the local moments are randomly oriented:
a site is equally likely to be A type as B type [19]. In either case the essential—and
limiting—feature of UHF is that it is a static approximation, with solely elastic scattering
of electrons andω-independent interaction self-energies approximated by

6̃0
Aσ = −

σ

2
U |µ| = −6̃0

Bσ . (2.3)
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For the AF phase, the UHF Green functions (G0
ii;σ ≡ G0

ασ with α = A or B) follow
from equations (2.2), (2.3) for the BL as

G0
Aσ (ω̃) =

[
ω̃ + σ

2
U |µ| − 1

2
t2∗G

0
Bσ (ω̃)

]−1

G0
Bσ (ω̃) =

[
ω̃ − σ

2
U |µ| − 1

2
t2∗G

0
Aσ (ω̃)

]−1 AF (2.4)

where the ‘medium’ self-energy part reflects the two-sublattice structure of the Néel state.
Equations (2.4) are a closed set, with the UHF local moment|µ| = |µ0| found self-
consistently via the usual gap equation (see e.g. [20]), which may be written formally
as

|µ0| =
∫ 0

−∞
dω̃ (DA↑(ω̃)−DA↓(ω̃)) (2.5)

in terms of the corresponding spectral densities. And the total Green function is given by

G0(ω̃) = 1

2
[G0

Aσ (ω̃)+G0
Bσ (ω̃)] (2.6)

such thatD0(ω̃) = −π−1 sgn(ω̃) ImG0(ω̃) gives the total single-particle spectrum.
For the P phase by contrast,

G0
Aσ (ω̃) =

[
ω̃ + σ

2
U |µ| − 1

2
t2∗G

0(ω̃)

]−1

G0
Bσ (ω̃) =

[
ω̃ − σ

2
U |µ| − 1

2
t2∗G

0(ω̃)

]−1 P. (2.7)

The sole difference from equation (2.4) occurs in the medium self-energy (see equation
(2.2b)), since the nearest neighbours to any site are equally likely to be A- or B-type sites.
Equations (2.6) are a closed set forG0(ω̃) and theG0

ασ (ω̃) in the P phase; the UHF local
moment is again found from equation (2.5).

For either phase there are two basic symmetries, namely

D0
Aσ (ω̃) = D0

B−σ (ω̃) (2.8a)

and

D0
Aσ (ω̃) = D0

A−σ (−ω̃) (2.8b)

reflecting the↑/↓-spin symmetry (G0
Aσ (ω̃) = G0

B−σ (ω̃)) and particle–hole symmetry
(G0

Aσ (ω̃) = −G0
A−σ (−ω̃)) respectively; and note therefore from equation (2.6) thatG0(ω̃)

is naturally independent of the spin,σ .
We add further that UHF yields the correct atomic limit (where|µ0| = 1) for either

phase, as is clear from equations (2.4), (2.6), (2.7) witht∗ = 0.

2.1.1. Antiferromagnet. UHF for the AF has been widely studied since the early work of
Penn [18]. Here we mention only that for anyd > 1 the exact ground state of the12-filled
Hubbard model on a bipartite lattice is an AF insulator for allU > 0, and this is qualitatively
well captured at UHF level: for allU > 0, the mean-field ground state is a two-sublattice
Néel AF, with a gap in the single-particle spectrumD0(ω̃) given by1(U) = U |µ|; figure
1 showsD0(ω̃) at U/t∗ = 4 for thed∞ BL.

The deficiencies of UHF are however most clearly seen in strong coupling,U → ∞,
where for the AF the single-particle spectrum reduces toD0(ω̃) = 1

2[δ(ω̃ + U/2)+
δ(ω̃ − U/2)]—as for the atomic limit,t∗ = 0. The physical origin of this is simple:
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Figure 1. The UHF single-particle spectrum,D0(ω̃), versusω̃ = ω − U/2 (in units of t∗) for
the d∞ Bethe lattice. AtU/t∗ = 4, for the AF phase (full line) and the P phase (dashed).

consider for example the upper Hubbard band in strong coupling, and imagine adding an↑-
spin electron to a site (B type) already occupied by a↓-spin. Since UHF is anindependent
(albeit interacting) electron approximation, only the added↑-spin can potentially hop to
nearest-neighbour (NN) sites. But it cannot do so in the strong-coupling limit, since for the
AF all NNs to the↓-spin B site are↑-spins (A type). The added↑-spin thus effectively
‘sees’ the↓-spin site as an isolated site, hence the emergence of atomic limit behaviour as
the strong-coupling limit at UHF level. But while physically transparent, this behaviour is
wrong. In strong coupling, and for the one-hole sector appropriate to the lower Hubbard
band (or one-doublon sector for the upper Hubbard band), the Hubbard model maps onto
the t–J model [11]

ĤtJ = −t
∑
(i,j)σ

c̄
†
iσ c̄jσ +

1

2
J∞

∑
(i,j)

(
Si · Sj − 1

4
ninj

)
(2.9)

where the hole moves in a restricted subspace of no doubly occupied sites (c̄
†
iσ =

c
†
iσ (1 − ni−σ )); and in the fluctuating spin background provided by the Heisenberg part

of ĤtJ , with NN exchange couplingJ∞ = 4t2/U . Although it is exact in the atomic limit,
UHF by itself can evidently say essentially nothing about the strong-coupling limit.

2.1.2. Paramagnet. UHF for theT = 0 paramagnetic phase warrants separate discussion,
in part because of its very close relation to two other well known approaches. The first is that
due to Hubbard [13], with ‘spin-disorder scattering’ only. This is often called the Hubbard
III (HIII) approximation, and we here refer to it thus (noting that ‘resonant broadening’
contributions are additionally included in reference [13]). HIII is equivalent to UHF, but
with a saturated local moment. Thus, with|µ| = 1, the resultant cubic equation forG0(ω̃)

on thed∞ BL, obtained from equations (2.6), (2.7) above, coincides precisely with the HIII
approximation for anyU ; see e.g. equation (34) of reference [21]. Although Hubbard’s
original formalism is very different, its physical content is that of a static approximation to
an alloy analogy description [22]; a close relationship to UHF is thus to be expected.
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The second connection is to the Falicov–Kimball (FK) model [14], a simplified version
of the Hubbard model in which electrons of only one spin type are mobile, and which ford∞

is exactly soluble [23–25]. For the paramagnetic phase of the FK model the single-particle
Green function reduces precisely to that of HIII for anyU [22], i.e. to the above-mentioned
cubic forG0(ω̃) on thed∞ BL; see e.g. equations (7.3) and (4.4) of reference [25].

For the P phase, figure 1 shows the UHFD0(ω̃) for U/t∗ = 4 on thed∞ BL, contrasted
with its AF counterpart. Ordering or otherwise of the preformed local moments clearly
has a significant effect on the spectra. In the AF ordered case, for example, the interior
edges of the Hubbard bands have characteristic square-root divergences, while for the P
phase all band edges vanish with square-root behaviour. More significantly, while the
two-sublattice structure of the Néel ordered state ensures a band gap1 = U |µ| for all
U > 0, the single-particle UHF gap vanishes in the P phase at a criticalUc ' 1.9t∗
given byUc|µ(Uc)| =

√
2t∗—or correspondinglyUc =

√
2t∗ for HIII/FK—signalling an

insulator–metal transition. UHF/HIII fails of course in the metallic phase, there being no
well defined Fermi surface or quasiparticles [22, 26]. This is inevitable for any inherently
static approximation with a frequency-independent self-energy6̃ασ , since the essence of
Fermi liquid behaviour is the inelasticity of electron scattering near the Fermi level,ω̃ = 0
[27].

However, even in the P insulating phase of interest here, UHF/HIII is deficient. As for
the AF this is seen most clearly in strong coupling,U → ∞, where although the centres
of the Hubbard bands are separated byU , each has a non-vanishing width. In the strong-
coupling P phase, and for the one-hole (doublon) sector corresponding to the lower (upper)
Hubbard band, the Hubbard model maps onto thet–J model (equation (2.9)) in arandom
spin background; and the exact full bandwidth of either band is given for thed∞ BL by
[28, 29]

W∞ = 2
√

2t∗ U →∞. (2.10a)

Note that this is also the single-particle bandwidth in the other extreme of the non-interacting
limit, reflecting physically that in strong coupling the hole/doublon behaves essentially as a
free particle [30].

In contrast, the strong-coupling bandwidth at UHF/HIII level is

W 0
∞ = 2t∗ UHF/HIII . (2.10b)

UHF or HIII does not therefore give the exact strong-coupling limit for the Hubbard model,
contrary to what has been suggested recently [31]; but, as is clear from the above discussion,
gives instead the strong-coupling limit of the FK model [25]. The physical origin of equation
(2.10b) is however both simple and revealing. Consider again the upper Hubbard band in
strong coupling, and imagine adding an↑-spin electron to a B-type↓-spin site. Within a
static approximation such as UHF/HIII, only the added↑-spin can hop; and it can do so
in the first instance to any of↓-spin NNs (B-type sites) only—the effective coordination
number for which isZeff = 1

2Z. SinceZeff for the propagating↑-spin electron is reduced
by a factor of 2 below the full coordination number, and since the bandwidth of thed∞

BL is proportional to
√
Zeff, the strong-coupling UHF/HIII width is thus diminished by

√
2

from the corresponding non-interacting value which, as in equation (2.10a) above, is also
the exact strong-coupling limit; equation (2.10b) thus results.

The distinction between equations (2.10a) and (2.10b) is however qualitative, and not
solely a matter of degree, reflecting the need to take seriously—even in strong coupling—
the correlateddynamics of the electrons. Whenever, say, an↑-spin electron is added to a
site occupied by a↓-spin electron, the added↑-spin can indeed propagate in the P phase,
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scattering elastically off successive neighbouring↓-spins; and as sketched above this is well
captured at UHF/HIII level. But, having added the↑-spin to a↓-spin site, the latter can
itself clearly hop off the site—to a neighbouring↑-spin site—leaving behind it a spin-flip
on the original site. The energy cost for the spin flip is zero, since we are considering the
P phase where, ford∞, a given spin is equally likely to be surrounded by↑- or ↓- spins
and has as many↑- as↓-spin neighbours (whence there is no ‘exchange penalty’ for a spin
flip). Thus, whether the added↑-spin or the↓-spin already present hops off the site, the
initially created doublon propagates as a free particle [30]; equation (2.10a) thus results. To
describe correctly the electron dynamics,both types of process above—and therefore the
interference between them—must be included. A static approximation such as UHF/HIII
cannot handle this, since such dynamics reside in the frequency dependence of the full
interaction self-energỹ6iσ (ω̃), as considered in section 3.

Figure 2. The particle–hole ladder sum in the transverse spin channel, for RPA5+−ii . Bare
(UHF) propagators are denoted by solid lines, on-site interactions by wiggles. Ford = ∞, all
intermediate sitesi1, . . . , in are equal toi.

2.2. RPA

In contrast to single-particle spectra—probing states one hole or particle away from1
2-

filling—RPA probes fluctuations about the mean-field state, and thus excitations of the
1
2-filled state itself. For the insulating phases, with a gap to charge excitations,transverse
spin excitations are of lowest energy. These are reflected in the transverse spin-polarization
propagators5+−ij (t) = i〈T {S+i (t)S−j }〉 and5−+ij (t), given within RPA by

Π+−(ω) = 0Π+−(ω)[1− U 0Π+−(ω)]−1 (2.11a)

where [Π+−(ω)]ij = 5+−ij (ω), [1]ij = δij and 05+−ij is the pure UHF transverse spin-
polarization bubble. Equation (2.11a) leads directly to a familiar diagrammatic ‘bubble
sum’. Alternatively, since the interaction is solely on-site, this may be recast as a ‘ladder
sum’ of repeated particle–hole interactions in the transverse spin channel, as shown in figure
2; bare UHF propagators are denoted by solid lines, and the on-site interactions (conserving
spin at each vertex end) by wiggly lines. From the basic symmetries (equation (2.8)), it
follows that5−+ii (ω) = 5+−ii (−ω) for i = A or B; and5+−BB (ω) = 5−+AA (ω).

For finite d, intermediate sites in the ladder sum for5+−ii (figure 2) are in general
different from i. But since05ij ∼ O(d−m) for sites i and j mth-nearest neighbours,all
intermediate sites in5ii are equal toi for d∞; i.e. i = i1 = i2 = · · · = i whence5+−ii (or
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5−+ii ) is purely algebraic; that is

5+−ii (ω) = 05+−ii (ω)/[1− U 05+−ii (ω)] d∞. (2.11b)

The spectral density of transverse spin excitations is naturally reflected in Im5+−ii (ω),
as now considered for the AF and P phases.

Figure 3. Im5+−AA (ω) versusω/t∗ at U/t∗ = 4 for d∞ BL. (a) For the AF phase; the inset
shows theU/t∗ dependence of the AF spin-flip poleωp , with the dotted line denoting the
U → ∞ asymptoteω∞p = t2∗/U . (b) For the P phase, where the spin-flip poleωs = 0 for all
U in the insulating state.

2.2.1. The AF phase.For the AF phase, figure 3(a) shows Im5+−AA (ω) at U/t∗ = 4
for the d∞ Bethe lattice. Two distinct features are apparent: a low-frequency spin-flip
pole (discussed below), and a high-energy Stoner-like band. The latter consists simply
of weakly renormalized Hartree–Fock excitations across the gap in the mean-field single-
particle spectrum. Spectral density for the Stoner bands does not therefore begin until
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precisely|ω| = U |µ| (see figure 1), and their maximum density occurs for|ω| ' U . This
is as found also for finited; see e.g. reference [32].

The central feature in figure 3(a) is a low-ω pole atωp, located via equation (2.11b) from
U 05+−ii (ωp) = 1, and occurring for allU > 0 (figure 3(a), inset). This is the sole remnant,
for d∞, of the spin-wave-like component of the transverse spin spectrum studied recently
at RPA level [32]; and which, for finited and anyU > 0, is naturally gapless. Physically,
the single spin-flip pole atωp reflects the general suppression of spatial fluctuations ford∞:
it corresponds simply to the energy cost of flipping a spin in the AF background. This is
particularly clear in strong coupling, where the Stoner bands are eliminated entirely. Here,
as is well known [20, 33], the RPA transverse spin spectrum reduces (for anyd) to the linear
spin-wave spectrum of the nearest-neighbour AF Heisenberg model, with exchange coupling
J∞ = 4t2/U = 2t2∗/ZU , onto which the1

2-filled Hubbard model maps rigorously. And
for d∞ it is straightforward to show that the resultant linear spin-wave spectrum collapses
to an Ising-like spin-flip pole atω∞p = ZJ∞/2 = t2∗/U . Further, since linear spin-wave
theory for the Heisenberg model is exact ford∞ [34], it follows that in strong coupling
UHF+ RPA gives the exact spin excitation spectrum of the1

2-filled Hubbard model.
The occurrence of the singleωp-pole is robust to further renormalization of particle–hole

lines in5+−ii (ω), as discussed in section 3.3. We stress further that to capture it requires
the full ladder sum of repeated p–h interactions shown in figure 2: retention solely of the
‘bare’ polarization bubble diagram will clearly not suffice.

Figure 4. The QMC Ńeel temperature versusU/t∗ (open circles) for thed∞ hypercubic lattice
[24, 25]. The simple estimateTN ' 1

2ωp(U), argued to be valid forU/t∗ & 3, is also shown
(the solid line forU/t∗ > 3). The strong-coupling asymptoteT∞N = t2∗/2U is indicated by the
dotted line.

The necessity of including the AF spin-flip scale will be evident when discussing the
T = 0 single-particle spectra; sections 3.2, 3.3. Here, we illustrate briefly its importance
at finite temperature, as reflected in the Néel temperatureTN(U). Molecular-field theory is
exact for the Heisenberg model ind∞ [35]; thus, in strong coupling,TN = ZJ∞/4= 1

2ω
∞
p .

At finite U , we expectTN(U) ' 1
2ωp(U) to yield a good estimate of the Néel temperature in

a U -regime where thermal properties are dominated by the low-lying spin-flip excitations.
Jarrell and Pruschke [36, 37] have obtained the finite-T phase diagram for thed∞ hypercubic
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lattice via quantum Monte Carlo (QMC). The thermal paramagnetic phase aboveTN(U) is
found to be metallic forU/t∗ . 3 and insulating forU/t∗ & 3 (with a small ‘crossover’
regime); it is thus in the latter region that we expectTN ' 1

2ωp. This is borne out. Figure
4 shows the QMCTN(U) for the d∞ hypercubic lattice, together with the corresponding
1
2ωp(U) and the exact strong-coupling asymptoteTN = 1

2ω
∞
p . The QMC Ńeel temperature

is indeed well described by12ωp(U) down toU/t∗ ∼ 3.

2.2.2. The P phase.For theT = 0 P phase, figure 3(b) shows Im5+−AA (ω) at U/t∗ = 4
for the d∞ Bethe lattice. Compared to its AF counterpart (figure 3(a)) the key difference
is that the spin-flip pole occurs atω = 0, reflecting the fact that the energy cost for a spin
flip is zero in the paramagnetic insulator, as argued physically in section 2.1.2. The formal
origin of this at RPA level is seen readily by noting that the bare transverse spin-polarization
bubble (figure 2, diagram (a)) is given by

05+−AA (ω) = i
∫ ∞
−∞

dω̃′

2π
G0

A↓(ω̃
′)G0

A↑(ω̃
′ − ω). (2.12)

From equation (2.4) for the UHF Green functions, usingG0
A↓ = G0

B↑, it follows that

G0
A↓(ω̃)G

0
A↑(ω̃) = −

1

U |µ| (G
0
A↑(ω̃)−G0

A↓(ω̃)). (2.13)

Hence, using the spectral representation ofG0
Aσ (ω̃),

05+−AA (ω = 0) = 1

U |µ|
∫ 0

−∞
dω̃

[
D0

A↑(ω̃)−D0
A↓(ω̃)

]
. (2.14)

Since the UHF local moment|µ| = |µ0| is given by equation (2.5),05+−AA (ω = 0) = 1/U ;
and thus from equation (2.11b) the RPA5+−AA (ω) has a spin-flip pole atω = 0.

Note again, as for the AF case, that the full ladder sum of particle–hole interactions in
the transverse spin channel is required to capture theω = 0 spin-flip pole. Further, although
we have shown explicitly its existence within RPA, the occurrence of the zero-frequency
spin-flip scale is naturally a general feature of thed∞ paramagnetic insulating phase where,
locally, the ground state is a doubly degenerate local moment (as for the single-impurity
Anderson model embedded in an insulating host) [5].

For both phases, the evident virtues of the RPA for excitations of the1
2-filled state

contrast sharply with the deficiencies of the single-particle spectra at UHF level; section
2.1. This itself hints at what is necessary to describe the single-particle spectra successfully:
single-particle processes must be coupled dynamically to the transverse spin excitations,
reflected in the frequency dependence of the self-energy. This is now considered.

3. Green functions

It is helpful to separate the full interaction self-energies6̃ασ (ω̃) as

6̃Aσ (ω̃) = −σ
2
U |µ| +6Aσ (ω̃)

6̃Bσ (ω̃) = σ

2
U |µ| +6Bσ (ω̃)

(3.1)

where6ασ (ω̃) (α = A or B) excludes the first-order UHF-type contribution, and contains
the dynamics on which we want to focus. From equations (2.2), (2.3) for the Bethe lattice,
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the exact site-diagonal Green functions are thus given formally by

GAσ (ω̃) =
[
ω̃ + σ

2
U |µ| − SAσ (ω̃)−6Aσ (ω̃)

]−1

(3.2a)

GBσ (ω̃) =
[
ω̃ − σ

2
U |µ| − SBσ (ω̃)−6Bσ (ω̃)

]−1

. (3.2b)

Here, the medium self-energy is given for the AF and P phases by

Sασ (ω̃) =


1

2
t2∗Gᾱσ (ω̃) AF

1

2
t2∗G(ω̃) P

(3.2c)

where the site index̄α = B or A for α = A or B respectively; and

G(ω̃) = 1

2
[GAσ (ω̃)+GBσ (ω̃)] (3.3)

is the total Green function.
As at UHF level,↑/↓-spin symmetry and particle–hole symmetry for the corresponding

spectral densities imply

DAσ (ω̃) = DB−σ (ω̃) (3.4a)

and

DAσ (ω̃) = DA−σ (−ω̃) (3.4b)

respectively. For the associated Green functionsGασ (ω̃) = G+ασ (ω̃) + G−ασ (ω̃), a Hilbert
transform of equations (3.4) gives directly

G±Aσ (ω̃) = G±B−σ (ω̃) (3.5a)

and

G±Aσ (ω̃) = −G∓A−σ (−ω̃). (3.5b)

Thus, from equation (3.3),

G(ω̃) = −G(−ω̃) (3.5c)

while from equations (3.2), (3.5)

6Bσ (ω̃) = 6A−σ (ω̃) (3.6a)

and

6Bσ (ω̃) = −6Aσ (−ω̃) (3.6b)

and likewise for the6̃ασ . Equations (3.5a) with (3.3) show also thatG(ω̃) is correctly
independent of spin.

The symmetries reflected in equations (3.5), (3.6) play an important role in the following
analysis. For the P phase, note also the physical interpretation of equation (3.3) forG(ω̃):
viewing the paramagnet in terms of randomly oriented local moments, where a site is equally
likely to likely to be A type as B type, we can consider equation (3.3) as a configurationally
averaged Green function. This is a natural alloy analogy interpretation but, unlike the static
approximation to such inherent in UHF or HIII, it is formally exact since no approximation
to the interaction self-energies has thus far been made.
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3.1. Self-consistent renormalization

Our aim now is to develop a specific approximation to the self-energy which in particular
(a) becomes exact in strong coupling, ensuring thereby a controlled limit; and (b) is
constructed in renormalized form, enabling a self-consistent solution for the single-particle
Green functions.

Figure 5. A diagram contributing to single-particle self-energy6iσ , with the same notation as
in figure 2; for a full discussion, see the text.

A relevant diagram contributing to6iσ is shown in figure 5, employing the same
diagrammatic notation as figure 2. Using deliberately a strong-coupling terminology, its
physical interpretation is as follows (witht > 0 for convenience): att = 0 a (σ =) ↑-spin
electron, say, is added to sitei, thus creating a ‘doublon’; att1 > 0 the (−σ =) ↓-spin
electron already present on sitei hops fromi to j , and att2 > t1 an↑-spin hops fromj to
k; the entire path is then retraced. The diagram thus describes motion of the doublon (or
hole for t < 0) from i → j → k via a correlated sequence of alternating spin hops, creating
behind it a string of flipped spins. All ladder interactions of the resultant on-site particle–
hole pair—which reflect the on-site spin-flip created by motion of the doublon/hole—are
shown explicitly for sitei in figure 5; from which it is seen that their sum is exactlyU25−+ii ,
with 5−+ii (ω) (=5+−ii (−ω)) the RPA transverse spin propagator discussed in section 2.2
(cf. figure 2).

It is precisely correlated dynamics of the sort exemplified by figure 5 that we seek to
include and generalize in the frequency-dependent6ασ (ω̃). To this end we first define an
undressed (or self-consistent host) Green function by

Gii;σ (ω̃) = [G−1
ii;σ (ω̃)+6iσ (ω̃)]−1. (3.7)

This is shown diagrammatically in figure 6(a), as obtained simply from equation (3.7)
using the Dyson equation for the full Green functionGii;σ expressed in terms of the UHF
propagators and self-energy insertions. As seen from the figure, the implicit sum over
intermediate sitesj, k, etc is thus restricted to exclude sitei itself (unlike the fullGii;σ
where the site sums are free). While including all interactions on sitesj 6= i, Gii;σ thus
excludes all interactions on sitei beyond the simple first-order UHF contribution tõ6iσ .
The latter is of course subsumed into the UHF Green functions (as in section 2.1), which
here constitute the ‘bare’ propagators; and in this important sense the above definition,
equation (3.7), of the host propagator differs from that of e.g. references [21, 36–40] (which
would be recovered if we set the site local moment|µ| = 0).

To generalize the processes contained in figure 5, we renormalized the self-energy as
shown in figure 6(b), replacing the−σ -spin particle lines connecting the starred vertices
i in figure 5 by the self-consistent host Green functionGii;−σ ; the infinite set of diagrams
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(a)

(b)

Figure 6. (a) The undressed (or self-consistent host) Green functionGii;σ , expressed in terms
of bare (UHF) propagators and site-diagonal self-energy insertions6iσ . Note the restrictions
on intermediate site sums. (b) The basic approximation to6iσ used in the present work, from
which the full set of diagrams retained follows by iteration using (a).

Figure 7. A ‘direct’ diagram (a), and its exchange counterpart (b). With sitej = i excluded
from the implicit sum overj , the direct diagram is O(1) while the exchange diagram is O(1/d).

thus retained in6iσ follows simply by direct iteration of figure 6(b) using figure 6(a) for
Gii;−σ . This renormalization is adopted for the following reasons.

(i) It ensures that an on-site spin flip occurs only when the doublon/hole hops off a site,
and that its outward path is self-avoiding. With reference to figure 5 for example, sitej 6= i
is guaranteed, likewisek 6= j ; while terms withk = i vanish ford∞, being at least O(1/d)
sinceG0

ij ;σ ∼ O(d−m/2) for sitesi andj mth-nearest neighbours.
(ii) In addition, the resultant site restrictions further prevent the need to include a class

of partially cancelling exchange diagrams, as illustrated simply in figure 7 (where a sum
over j 6= i is implicit). Sincej 6= i is guaranteed, the exchange diagram (figure 7(b)) is at
least O(1/d) and thus vanishes ford∞, while the ‘direct’ diagram (figure 7(a)) is O(1). If,
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however,j = i was included in the direct diagram, its exchange counterpart would also be
O(1) and would thus need to be retained.

Our basic approximation to6iσ (ω̃) is thus figure 6(b), namely

6A↑(ω̃) = U2
∫

d�

2π i
5−+AA (�)GA↓(ω̃ −�) (3.8a)

and the remaining6ασ follow by symmetry; equation (3.6). From section 2.2 the RPA
5−+AA (�) (=5+−AA (−�)) may be separated into the spin-flip pole contribution,Q[�+ ωs −
iη]−1 (with pole weightQ), plus the Stoner contribution; whence equation (3.8a) may be
cast as

6A↑(ω̃) = QU2G−A↓(ω̃ + ωs)+6Stoner
A↑ (ω̃) (3.8b)

with spin-flip frequency

ωs =
{
ωp AF

0 P.
(3.8c)

By symmetry,GA↓(ω̃) = GB↑(ω̃) using equations (3.5)–(3.7); and from equations (3.7),
(3.2):

GA↓(ω̃) =


[
ω̃ − 1

2
U |µ| − 1

2
t2∗GA↑(ω̃)

]−1

AF[
ω̃ − 1

2
U |µ| − 1

2
t2∗G(ω̃)

]−1

P.

(3.9)

From equation (3.8a), 6A↑(ω̃) is thus a functional of the Green functions, the basic
equations for which (equations (3.2)) must therefore be solved self-consistently, as now
described.

3.2. Strong coupling

We consider first the behaviour in strong coupling, as this can be extracted analytically.
Since|µ| = 1−O(t2∗/U

2), equations (3.2) reduce in strong coupling to

GA↑(ω) = [ω − SA↑(ω)−6A↑(ω)]−1 (3.10a)

GB↑(ω) = [ω − U − SB↑(ω)−6B↑(ω)]−1. (3.10b)

The interaction self-energy, equation (3.8), likewise simplifies in strong coupling, since the
Stoner contribution vanishes (see section 2.2) and the pole weightQ → 1. Hence from
equation (3.8b),

U−26A↑(ω) = G−A↓(ω + ωs) = G−B↑(ω + ωs). (3.11)

This may be reduced further, noting thatG−B↑(ω) is given by

G−B↑(ω) =
∫ U/2

−∞
dω1

DB↑(ω1)

ω − ω1− iη
(3.12)

as a one-sided Hilbert transform of the corresponding lower-Hubbard-band spectral density,
DB↑(ω1) = −π−1 sgn(ω1− U/2) ImGB↑(ω1); and from equations (3.7), (3.10b)

GB↑(ω1) = [ω′1− U − SB↑(ω1)]
−1 = [ω′1− U ]−1+ [ω′1− U ]−2SB↑(ω1)+O(U−3) (3.13)
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whereω′1 = ω1+iη sgn(ω1−U/2). From equation (3.12), the leading large-U contribution to
G−B↑(ω) thus arises from the second term in equation (3.13), yieldingG−B↑(ω) = U−2S−B↑(ω);
hence from equations (3.11), (3.2c):

6A↑(ω) = S−B↑(ω + ωs) =


1

2
t2∗G

−
A↑(ω + ωp) AF

1

2
t2∗G

−(ω) P.
(3.14)

We focus now on the lower Hubbard band (LHB) in strong coupling, i.e. for
ω ≈ 0 � U → ∞; the upper Hubbard band follows trivially by symmetry. Since
6B↑(ω) = −6A↑(U−ω), it follows that forω in the LHB6B↑(ω) is pure real and O(1/U);
it can thus be neglected. TheG+α↑(ω ≈ 0) are likewise pure real, withG+B↑(ω) ∼ O(1/U)
and G+A↑(ω) ∼ O(1/U3) (as may be shown using equation (3.10) together with the

analogue of equation (3.12) forG+ασ (ω)); together withG+(ω) = 1
2[G+A↑ + G+B↑], they

too may be neglected. And from equation (3.10b), G−B↑(ω) ≡ G−B↑(ω) = U−2S−B↑(ω)
which can also be neglected asymptotically. Hence in total,GA↑(ω) ≡ G−A↑(ω) and

G(ω) = 1
2[GA↑(ω) + GB↑(ω)] ≡ 1

2GA↑(ω). For the LHB in strong coupling, equation
(3.10a) thus reduces to

GA↑(ω) =
[
ω − 1

2
t2∗GA↑(ω + ωp)

]−1

AF (3.15a)

GA↑(ω) =
[
ω − 1

2
t2∗GA↑(ω)

]−1

P. (3.15b)

These are the equations for the correspondingt–Jz model on the Bethe lattice, for an
AF and random spin background respectively (see e.g. [11, 41]); thet–Jz model itself is
naturally equivalent ford∞ to thet–J model since the spin excitations are purely Ising-like.
We add in passing that a much more detailed asymptotic analysis, picking up constant terms
O(1/U), leads to the ‘bare’ω in the denominators of equations (3.15) being replaced by
ω + ωp andω + 1

2ωp respectively for the AF and P phases. These shifts, neglected in the
brief analysis above, reflect simply the presence of the trivial charge terms in thet–J model
(see equation (2.9)); they are irrelevant to our subsequent discussion.

Since thet–J limit emerges correctly in strong coupling, the present theory is thus
asymptotically exact. Consider for example the P phase, noting that for theU = 0 non-
interacting limit the Green functionG0(ω) = ReG0(ω)− iπ sgn(ω)D0(ω) is given by

G0(ω) =
[
ω − 1

2
t2∗G0(ω)

]−1

U = 0 (3.16a)

whence the non-interacting spectrum

D0(ω) = 1

πt∗
[2− (ω/t∗)2]1/2 |ω| 6

√
2t∗ (3.16b)

is a semi-ellipse with full width 2
√

2t∗. From equation (3.15b) this is also precisely the
spectral density forGA↑(ω) in the lower Hubbard band. And sinceG(ω ' 0) = 1

2GA↑(ω)
as above, the total lower-Hubbard-band spectrum in strong coupling isDL(ω) = 1

2D0(ω);
see also section 2.1.2 (the normalization factor of1

2 naturally reflects the fact that the
remaining half of the single-particle spectrum occurs in the upper Hubbard band centred
on ω = U , namelyDU(ω) = 1

2D0(U − ω)). Note further that the Feenberg (‘medium’)
and interaction self-energies contribute equally to the1

2t
2
∗GA↑(ω) denominator in equation
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(3.15b) for the P phase. Physically, this reflects the fact discussed in section 2.1.2 that,
upon adding aσ -spin electron to a site, it is equally probable for either the addedσ -spin or
the−σ -spin electron already present to hop off the site. At the UHF/HIII level, in contrast,
only the former can by construct occur (6ασ = 0): the analogue of equation (3.15b) is then
G0

A↑(ω) = [ω− 1
4t

2
∗G

0
A↑(ω)]

−1, producing an incorrect strong-coupling bandwidth of 2t∗ as
argued physically in section 2.1.2.

The AF case itself is discussed further in the following section since, in contrast to
the P phase, theapproachto strong coupling is subtle and physically revealing. Here we
simply add the following points. (i) In contrast to in the P phase, the1

2t
2
∗GA↑(ω + ωp)

denominator in equation (3.15a) for the AF stemssolely from the interaction self-energy
6A↑(ω). Thus at the UHF/HIII level atomic limit behaviour arises (incorrectly)—that is,
G0

A↑(ω) = 1/ω—as argued physically in section 2.1.1. (ii) Although obtained explicitly
for the Bethe lattice, equation (3.15a) holds equally for the hypercubic lattice in strong
coupling. This is because retraceable paths, which by construct are the only self-energy
paths for a Bethe lattice, are for thed∞ hypercube also the only paths which restore the
Néel spin configuration; see also [29].

3.3. Results

At finite U the basic self-consistency equations, (3.2) and (3.8a), are solved numerically.
We consider first the AF phase.

Figure 8. The lower-Hubbard-band spectrumDL(ω) versusω (in units of t∗) for the AF phase
(Bethe lattice) atU/t∗ = 10; the Fermi level lies atU/2 = 5. The correspondingt–Jz limit
spectrum is also shown, as discussed in the text.

3.3.1. Antiferromagnet. ForU/t∗ = 10, figure 8 shows the resultant lower Hubbard band,
DL(ω) = π−1 ImG(ω); from particle–hole symmetry the upper band follows by reflection
about the Fermi level,DU(ω) = DL(U − ω).
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For the sameωp-value (figure 3(a), inset), figure 8 shows also the correspondingt–Jz
limit spectrum from equation (3.15a). As is well known [11] thet–Jz spectrum is discrete
(and to illustrate the relative intensities is thus shown with the height proportional to the
integrated weight). Physically, this reflects the fact that the hole is pinned by the string
of spin flips that its motion creates, leading therefore to spatially localized single-particle
excitations and hence a discrete spectrum; mathematically, it is reflected in the convergence
of the continued fraction implicit by iteration of equation (3.15a).

Although theU/t∗ = 10 spectrum evidently bears a close resemblance to itst–Jz
counterpart, it is by contrast continuous. This persists for any finiteU : with increasing
interaction strength the individual sub-bands inDL(ω) centre ever more closely on their
t–Jz counterparts, and their integrated spectral weights tend to those of thet–Jz limit; but
they retain a finite width, reflecting delocalization of the hole. The peculiarities forU →∞
are further evident in thet–Jz model itself, equation (3.15a). For anyωp > 0 the t–Jz
spectrum is discrete, while forωp = 0 (as in equation (3.15b) for the P phase) the spectrum
is continuous: the pointωp = 0 thus corresponds to a transition from localized to extended
single-particle excitations, and sinceωp → t2∗/U asU → ∞ it is clear thatU = ∞ is a
singular point.

While the physical mechanism leading to delocalization of the hole at any finiteU is not
of course inherent in thet–Jz model equation (3.15a) itself, it is readily inferred. Consider
the Ńeel spin configuration and imagine removing, say, an↑-spin electron from an A-type
site, i. The nearest neighbours (NN) to any↑-spin site all all↓-spins. Hence to leading
order in U—the t–Jz limit—the hole initially moves via a NN↓-spin electron hopping
onto sitei, creating thereon a spin flip (with an associated exchange energy penalty); and
the subsequent motion of the hole via such a correlated sequence of alternating NN spin
hops, in leaving behind a string of upturned spins, would by itself render the hole spatially
confined.

At large but finiteU there is however a small but non-vanishing probability amplitude,
of order t2∗/U , for an ↑-spin electron on asecondNN site, also A-type, to hop to site
i via an intervening↓-spin site: the hole thus moves two lattice spacings, to the second
NN A-type site. Unlike the ‘t–Jz processes’ above, this does not entail a spin flip with
concomitant exchange penalty: the hole moves freely.

This mechanism evidently leads to hole delocalization and, in tandem with thet–Jz
processes, produces the strong-coupling spectrum. Its formal origins reside in the passage
from equation (3.10a) to equation (3.15a) for the AF lower Hubbard band in strong coupling,
where the Feenberg part of the self-energySA↑(ω) = 1

2t
2
∗GB↑(ω) was neglected. As seen

readily from the asymptotics of section 3.2, the leading corrections to ImSA↑(ω ≈ 0) are
Im SA↑(ω) = (t2∗/2U)

2 ImGA↑(ω). It is these that embody the delocalization described
above, and lead to spectral broadening (contributions to ReSA↑(ω) are O(1/U) and lead
simply to residual energy shifts). Further, note that since the energetic width of the spectral
broadening is naturally the smallest energy scale in strong coupling, the principal effect on
the ‘bare’ t–Jz spectrum is a small resonant broadening of the individualt–Jz lines. This
is seen in figure 8, and becomes clearer still with further increasingU .

To our knowledge, the above mechanism is the only one which can lead to hole
delocalization for thed∞ AF in strong coupling; and for the reasons already given in
section 3.2 this applies to the hypercubic as well as the Bethe lattice. For finited it is for
example well known that Trugman paths [42] lead to hole delocalization for the hypercubic
lattice, but such processes are O(d−4) and do not therefore contribute ind∞ [29].

As U is decreased, the spectra continue to exhibit essentially strong-coupling behaviour
down to modest interaction strengths ofU/t∗ ∼ 2–3, and can thus be understood
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qualitatively starting from thet–Jz limit. This is shown in reference [7] (see e.g. figure 3(b)
therein).

Figure 9. The full spectrumD(ω̃) versusω̃ = ω−U/2 (in units oft∗) for the AF phase (Bethe
lattice) atU/t∗ = 1. Dotted line: the UHF spectrum; full line: from the present theory; dashed
line: with |µ| and5−+AA further renormalized as described in the text.

With further decreasingU however, the spectra evolve continuously to a weak-coupling
form that shows no trace of remnantt–Jz-like behaviour. The spectral gap closes only in
the non-interacting limit whence, correctly, the system is an AF insulator for allU > 0.
The full spectrumD(ω̃) = DL +DU is shown in figure 9 forU/t∗ = 1, together with the
corresponding UHF spectrum to which (as one expects) it is qualitatively closer, although
the single-particle gap1g is reduced to 0.42 of the UHF gap1 = U |µ0|.

Two further renormalizations have been performed to check the veracity of the above
results. First, note that although the Green functions have been obtained self-consistently
via equations (3.2), (3.8), the single-particle propagators occurring in the RPA5−+AA that
enters the self-energy kernel equation (3.8a) are themselves bare UHF propagators; see
figure 2. To ensure that the theory is robust, we have thus additionally renormalized the
single-particle lines entering5−+AA in terms of both the (self-consistent) full Green functions
Gασ and the host Green functionsGασ . The results in either case differ only quantitatively,
and at lowU , from those just described; see also below.

The second renormalization concerns the local moment|µ| which, in the calculations
above, has been set to its UHF value|µ0|. In weak coupling, van Dongen [43] has examined
perturbatively the Ńeel temperature and the moment magnitude|µ| (the order parameter)
for the d∞ hypercubic lattice, and has shown that even forU → 0+ these are reduced
by a factorq of order unity (q ' 0.28 [43]) below their corresponding UHF values. The
present theory is not of course perturbative (e.g. the emergence of the AF spin-flip scale
is intrinsically non-perturbative), but it is certainly closer in spirit to the work of van
Dongen to renormalize the moment beyond the UHF level. This is quantitatively important
at low U , and is achieved by requiring that|µ| be determined fully self-consistently via
(cf. equation (2.5))

|µ| =
∫ 0

−∞
dω̃

[
DA↑(ω̃)−DA↓(ω̃)

]
(3.17)

whereDAσ is the full (as opposed to the UHF) spectral density.
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For illustration, figure 9 shows the Bethe lattice spectrum atU/t∗ = 1, obtained with
both |µ| and 5−+AA renormalized (the latter in terms of the full Green functions). The
gap1g is further diminished, the ratiog = 1g/1 being∼0.15; while the local moment
|µ| is likewise reduced below its UHF counterpart, such thatm = |µ|/|µ0| ∼ 0.39.
It is unfortunately not feasible to obtain numerically accurate estimates ofg and m as
U → 0 (since |µ| and1 rapidly become exponentially small). But forU/t∗ = 1 the
UHF moment itself is accurately represented by its asymptoticU → 0 limit, |µ0| =
8
√

2 exp[−πt∗/
√

2U −1], so the above result form may be reasonably close to its limiting
value.

3.3.2. Paramagnet. To obtain correctly the strong-coupling limit for either phase is,
as has been shown, fairly subtle. But in contrast to the AF, theapproach to strong
coupling for the paramagnetic phase is not. Figure 10 shows the full spectrumD(ω̃) =
−π−1 sgn(ω̃) ImG(ω̃) (ω̃ = ω − U/2) for the P phase atU/t∗ = 8, 6 and 4, compared to
the strong-couplingt–Jz limit from equation (3.15b). For U/t∗ = 8, the strong-coupling
limit has in practical terms been reached: the Hubbard bands are essentially symmetrically
centred onω̃ = ±U/2 respectively, with widthsW ∼ W∞ = 2

√
2t∗ and a band gap of

1g ∼ 1∞g = U − 2
√

2t∗; even forU/t∗ = 6 the departure from the asymptotic spectrum
is relatively minor. With further decreasingU , however, the individual bands become
increasingly asymmetric; and the gap tends to zero more rapidly than1∞g , signalling the
collapse of the insulating phase. This we now discuss, adding that throughout the insulating
regime the local moments are well developed (|µ| & 0.95), as in Mott’s conception of a
Mott insulator [44].

4. Destruction of the Mott insulator

Figure 11 shows the resultant band gap,1g(U), for the paramagnetic insulator as a function
of U/t∗. 1g(U) is found to vanish continuously at a criticalUc = 3.41t∗. Detailed numerical
analysis shows the corresponding exponent to be unity:

1g(U) ∼ (U − Uc)ν ν = 1 (4.1)

and we note that the width of the critical regime is quite narrow: the behaviour equation
(4.1) is seen clearly for(U − Uc) . 0.05t∗, corresponding to gaps1g(U) . 0.1t∗.

The continuous closure of the gap is intimately connected to the divergence of the low-
frequency dynamical characteristics of the system. Consider first the self-energy6̃A↑(ω̃).
At frequenciesω̃ ∈ [−ω̃+, ω̃+] inside the spectral gap(1g = 2ω̃+), 6̃A↑(ω̃) ≡ 6̃R

A↑(ω̃) is
pure real with a leading low-̃ω expansion:

6̃R
A↑(ω̃)− A = Bω̃ ω̃→ 0. (4.2)

Here,A ≡ 6̃A↑(ω̃ = 0) (=− 1
2U |µ| + 6A↑(0), see equations (3.1), (3.8)), and is finite for

all U > Uc (see also below). We wish to find the behaviour ofB = −|B| asU → Uc.
This is obtained by a scaling analysis. Definingy = ω̃/ω̃+, it is found that as the gap

closes (̃ω+ → 0), 6̃A↑(ω̃)− A obeys the scaling form

6̃R
A↑(ω̃)− A = ω̃α+f (y) α = 1

2
(4.3)

with exponentα = 1
2; i.e. for different values ofU close toUc, with correspondingly

different gaps1g(U) = 2ω̃+(U), the ω̃-dependent functions [6̃R
A↑(ω̃)−A]/ω̃1/2

+ plotted in
terms ofy = ω̃/ω̃+, collapse to a ‘universal’ functionf (y). Four points should be noted
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Figure 10. Full spectraD(ω̃) versusω̃ = ω − U/2 (in units of t∗) for the P phase (Bethe
lattice) atU/t∗ = 8 (a), 6 (b) and 4 (c). The corresponding strong-coupling spectra are shown
as dashed lines.

about the scaling behaviour. (i) Good scaling is found in practice for gaps1g . 0.1t∗,
consistent with the critical regime found above for closure of the gap. (ii) The scaling is
not confined to frequenciesy � 1 well inside the spectral gap, but encompasses the region
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Figure 11. The resultant spectral gap1g(U) versusU/t∗ for the P insulator (Bethe lattice).
The strong-coupling asymptote1∞g = U − 2

√
2t∗ is also shown (dashed line).

of non-zero spectral density (|y| > 1), certainly up to|y| ∼ 2. (Similar scaling withα = 1
2

naturally occurs for Im̃6A↑(ω̃), as follows from Kramers–Kronig; see also below.) (iii) In
numerical terms the scaling analysis is sufficiently accurate to distinguish readily between
an exponent ofα = 1

2 and, e.g.,α = 1
3. (iv) The scaling functionf (y) is a finite, well

behaved function ofy = ω̃/ω̃+, with f (y) ∼ y for y → 0 as is evident from equation (4.2).
From equations (4.3) and (4.2) it follows immediately that|B| ∼ ω̃−1/2

+ ; i.e.

|B| ∼ 1−1/2
g 1g → 0 (4.4)

or |B| ∼ (U −Uc)−1/2 from equation (4.1) (which we have confirmed by direct calculation
of B = (∂6̃A↑(ω̃)/∂ω̃)0).

The divergence of|B| controls additionally the low-frequency behaviour of ReG(ω̃) =
X(ω̃). From equation (3.5c), X(ω̃) = −X(−ω̃), whence its leading low-̃ω behaviour is

X(ω̃) = γ1ω̃ ω̃→ 0 (4.5)

(with γ1 = −|γ1|). From equations (3.1)–(3.3) and (3.6b), G(ω̃) may be written generally
as

G(ω̃) = 1

2

{[
ω̃ − 1

2
t2∗G(ω̃)− 6̃A↑(ω̃)

]−1

+
[
ω̃ − 1

2
t2∗G(ω̃)+ 6̃A↑(−ω̃)

]−1
}
. (4.6)

Using equations (4.2) and (4.5) on either side of (4.6) enables|γ1| to be related to|B|; the
result is

|γ1| = 1+ |B|
A2− 1

2t
2∗
. (4.7)

We find thatA2 > 1
2t

2
∗ for all U > Uc, whence the divergence of|B| asU → Uc controls

that of |γ1|:
|γ1| ∼ 1−1/2

g 1g → 0. (4.8)
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This is further confirmed by a scaling analysis ofX(ω̃) itself. In direct analogy to that
for 6̃A↑(ω̃) above,X(ω̃) is found to satisfy the scaling form

X(ω̃) = ω̃α+ x(y) α = 1

2
(4.9)

with x(y) = −x(−y), from which equation (4.8) in particular follows. For|y| > 1 the
corresponding spectrumD(ω̃) likewise shows the same scaling form as expected, with
D(ω̃) ∼ ω̃

1/2
+ [y − 1]1/2 = [ω̃ − ω̃+]1/2 for y ∼ 1 close to the lower edge of the upper

Hubbard band; this, combined with the spectral representation of|γ1|,

|γ1| = 2
∫ ∞
ω̃+

dω̃
D(ω̃)

ω̃2
(4.10)

leads again to equation (4.8).
It is instructive to compare the above results with those obtained from both the

simple HIII approximation discussed in section 2.1.2, and with the resonance broadening
contributions [13] additionally included, which we refer to as HIII′. For HIII, A = − 1

2U

and |B| = 0—the approximation is purely static. Equation (4.6) becomes a cubic for
G(ω̃), leading as is well known to1g ∼ (U − Uc)3/2 [13]. As is clear from equation
(4.7) with |B| = 0, the transition occurs whenA2(Uc) = 1

2t
2
∗ , i.e. Uc =

√
2t∗, and

|γ1| ∼ (U −Uc)−1 ∼ 1−2/3
g . The HIII′ approximation can also be shown to be of the form

of equation (4.6), but with ãω-dependent6̃A↑(ω̃) given by 6̃A↑(ω̃) = −U/2+ t2∗G(ω̃)
at low frequencies (which is sufficient for analysing the critical behaviour); soA = −U/2
and |B| = t2∗ |γ1|. Since6̃A↑(ω̃) is a simple linear function ofG(ω̃), equation (4.6) again
becomes a cubic forG(ω̃); and, as for HIII, the gap exponentν = 3

2 [13]. Equation (4.7)
with |B| = t2∗ |γ1| yields |γ1| = (A2 − 1

2t
2
∗ )/(A

2 − 3
2t

2
∗ ). The transition thus occurs when

A2(Uc) = 3
2t

2
∗ , i.e.Uc =

√
6t∗ as is well known [13]; and, again,|γ1| ∼ (U−Uc)−1 ∼ 1−2/3

g .
HIII and HIII ′ are thus both in the same universality class, reflected more generally in

the fact that in either case scaling of the form of equation (4.9) can be shown to hold, but with
an exponent ofα = 1

3. Gros [45] has recently extended Hubbard’s hierarchical equation-
of-motion decoupling scheme to higher order. The critical exponents are unchanged from
those of HIII/HIII′; and the value ofUc itself is barely changed from its HIII′ value of
Uc/t∗ ' 2.45. From the above discussion it is apparent that the present theory belongs to
a different universality class from that of HIII or its extensions.

In direct analogy to the AF phase discussed in section 3.3, we have tested the
robustness of our results by further self-consistently renormalizing single-particle lines in the
polarization propagator5−+AA (ω) = 05−+AA /(1−U 05−+AA ) that enters the self-energy kernel,
equation (3.8a). To illustrate what this involves, consider renormalizing05−+AA (and hence
5−+AA ) in terms of the self-consistent host Green functionsGασ . The resultant05−+AA (ω) is
then given generally by equation (2.12), with the bare (UHF) Green functionsG0

Aσ now
replaced byGAσ . Forω = 0 in particular, equation (2.14) likewise holds, but with the bare
D0

Aσ (ω̃) replaced by the renormalized spectral densitiesDAσ (ω̃) = −π−1 sgn(ω̃) ImGAσ (ω̃);
i.e.

U 05−+AA (ω = 0) = 1

|µ|
∫ 0

−∞
dω̃ [DA↑(ω̃)−DA↓(ω̃)]. (4.11)

As discussed in sections 2, 3 the key feature of the paramagnetic insulator is the zero-
frequency spin-flip scale. To preserve this, the local moment|µ| in equation (4.11)
is itself renormalized to ensure that at each step of the self-consistent iteration scheme
U 05−+AA (ω = 0) = 1 (and we note that throughout the entire insulating regime, the resultant



Insulating phases of thed = ∞ Hubbard model 4233

moment|µ| is also self-consistent in the sense of equation (3.17) to<1% accuracy). The
results of this further renormalization are found to differ negligibly from those that we have
reported above.

Finally, to demonstrate the importance of theωs = 0 spin-flip scale, we have eliminated
it: both by (a) neglecting its contribution to6A↑(ω̃) in equation (3.8b), retaining only
6Stoner

A↑ (ω̃); and (b) replacing5−+AA by 05−+AA in the self-energy kernel equation (3.8a).
Results obtained from (a) and (b) are very similar, but differ qualitatively from those
reported above. In particular, although the self-energy remainsω-dependent, the resultant
critical behaviour is found to be that of HIII/HIII′—the gap closes continuously, but with an
exponentν = 3

2. This points clearly to the necessity of including theωs = 0 spin-flip scale
throughout the entire insulating phase—not only in achieving the correct strong-coupling
limit (as in section 3.2), but also in describing the destruction of the insulating state.

5. Discussion

We now discuss the present work, particularly in relation to the iterated perturbation theory
(IPT) approach [21 38–40, 46], use and application of which has been extensive [5].
Although our theory of the Mott–Hubbard insulating phases, with its explicit emphasis
on local moments, is conceptually and technically distinct from IPT, some general points
of marked contrast are evident.

For the antiferromagnetic phase we have emphasized the importance of theωp spin-
flip scale, inclusion of which is necessary to obtain even qualitatively reasonable results
throughout essentially the entire range of interaction strengths, and in particular to recover
exact strong-coupling asymptotics. However, IPT does not appear to capture the AF spin-
flip scale, presumably because it omits repeated particle–hole interactions of the sort shown
in figure 2 (which, as in section 2.2.1, are required to pick up the spin flip). This is seen,
for example, from the known inability of IPT to describe correctly theU -dependence of the
Néel temperature [5], particularly in the ‘Heisenberg’ regime.

For the paramagnetic insulator, the results of section 4 also disagree qualitatively
with those obtained from IPT; see in particular [40] and the review [5]. Within IPT
the paramagnetic insulating solution is found to break downdiscontinuously(at a critical
Uc1 = 3.67t∗, where the IPT gap1g(Uc1) ∼ 0.3t∗), and|γ1| (equation (4.10)) remainsfinite
at the transition.

The same authors [12] have recently examined the insulator via exact diagonalization
(ED) on clusters ofns = 3, 5 and 7 sites, extrapolated tons → ∞ assuming 1/ns
scaling behaviour. The resultant data suggest a continuous closure of the gap at a
Uc1/t∗ = 3.04± 0.35 and are consistent with1g(U) ∼ (U − Uc); see also [5]. Further,
and independently of the gap analysis, the behaviour of|γ1| has also been examined by ED
[12], noting (see equation (4.10)) that a divergence in|γ1| implies a continuous closure of
the gap: 1/|γ1| is found to show good scaling behaviour, and to scale to zero whenns is
extrapolated to∞.

The present theory evidently agrees with the inferences drawn from ED. These concur
with our predictions (section 4) that the gap closes continuously and with an exponent
ν = 1, that |γ1| diverges, and (less importantly) the value ofUc itself; note moreover that
the ED gap [12] is in rather good agreement with the present work over a wide range ofU .
As described in section 4, inclusion of theωs = 0 spin-flip scale is central in describing the
destruction of the Mott insulator. That IPT appears unreliable close toUc [5] thus suggests
an incomplete inclusion of the effects of this spin scale—which cannot be entirely absent
since IPT does give the correct strong-coupling spectrum [47]—although in physical terms
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the origin of the spin-flip scale within IPT is not transparent.
To conclude, we have developed in this paper a theory for theT = 0 Mott–Hubbard

insulating phases of thed∞ Hubbard model, encompassing both the antiferromagnetic
and paramagnetic insulators. The microscopic perspective that it affords hinges on the
importance of low-energy scales for insulating spin-flip excitations. Their existence is
physically natural within the explicit local moment picture intrinsic to the theory, and
inclusion of them is required not only to obtain the strong-coupling limits of the single-
particle spectra—which are captured exactly—but more generally to describe the entire
insulating regimes, including for the paramagnetic phase in particular the destruction of the
Mott insulator.

Figure 12. Im5+−AA (ω) versusω (in units of t∗) at U/t∗ = 3.5 close to the boundary of the P
insulating state, with renormalization as described in the text.

Let us also note what we have not considered: the metallic state of the paramagnetic
phase. But a glimpse of what is required to describe the metal within the present framework
is evident from figure 12. ForU/t∗ = 3.5, close to the criticalUc of section 4, this shows
the spectral density of transverse spin excitations Im5+−AA (ω) (obtained here, as described
in section 4, with05+−AA renormalized in terms of theGAσ ). The ω = 0 spin-flip pole
characteristic of the paramagnetic insulator is evident, and persists down toUc. Clearly,
however, the spectral edges of the Stoner-like bands are themselves approachingω = 0.
This they do atU = Uc, and forU < Uc in the metallic phase the insulating spin-flippole
at ω = 0 is replaced by aresonanceat a small non-zero frequencyω = ωK , indicative of
the Kondo-like physics known to dominate the correlated metal [5, 6]. Extension of the
present approach for describing the metal, encompassing the Kondo spin scale in such a
manner that the correlated state is correctly a Fermi liquid, will be described in a subsequent
paper.
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